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 ABSTRACT 

 

Recently, several parts of the world suffer from electrical black-outs due to high electrical 

demands during peak hours. Stationary photovoltaic (PV) collector arrays produce clean and 

sustainable energy especially during peak hours which are generally day time. In addition, PVs 

do not emit any waste or emissions, and are silent in operation. The incident energy collected by 

PVs is mainly dependent on the number of collector rows, distance between collector rows, 

dimension of collectors, collectors inclination angle and collectors azimuth, which all are 

involved in the proposed modeling in this paper. The objective is to achieve optimal design of a 

PV farm yielding two conflicting objectives namely maximum field incident energy and minimum 

of the deployment cost. Two state-of-the-art multi-objective evolutionary algorithms (MOEAs) 

called Non-dominated Sorting Genetic Algorithm-II (NSGI-II) and Generalized Differential 

Evolution Generation 3 (GDE3) are compared to design PV farms in Toronto, Canada area. The 

results are presented and discussed to illustrate the advantage of utilizing MOEA in PV farms 

design and other energy related real-world problems. 

 

Keywords: PV collector arrays, multi-objective optimization, NSGA-II, GDE3, renewable 

energy. 

 

1. INTRODUCTION 

Solar energy is one of the most widely used 

renewable energies; because it is emission 

free and it is easily deployable. Several sun-

based energy generation methods exist, such 

as, photovoltaic farms (PV), concentrated 

solar power plants, and solar thermal 

electricity plants. These systems can be used 

for meeting the global energy crisis due to 

rising world-wide demands and insufficient 

supply of electricity throughout the world by 

deploying the appropriate systems in the 

required areas. For example, PV are 

inefficient in very hot areas, such as desert, 

but are more efficient in mild to cold areas. 

In this paper, PV panels are selected because 

of mild-cold weather conditions in Canada. 

Although Canada produces enough 

electricity to fulfill the national demand, 

nevertheless solar energy is of special 

interest due to PV non-polluting properties. 

Concentrated solar systems like the 

parabolic trough heat transfer fluid/steam 

systems can typically generate full rated 

electrical output for 10-12 hours a day 



(Schlaich et al., 2005). Other solar power 

generation systems include large solar 

updraft towers which can produce large 

amounts of electricity via utilizing air flow 

created by heated air which drives pressure 

staged turbines (Price et al., 2002). In spite 

of these available large-scale technologies, 

photovoltaic panels are the most popular 

method of harvesting solar energy, because 

they directly convert the Sun’s rays into 

electrical power. In addition, photovoltaic 

panels can be deployed anywhere and can 

provide a relatively stable electrical output. 

However, there are several drawbacks; they 

are subject to changing output efficiencies 

based on external factors such as shade, 

cloudy weather, covered by sands, and 

others. 

Photovoltaic systems consist in 

converting solar radiation (sunlight) directly 

to electricity. There are two types of solar 

radiations on the Earth: direct and diffuse 

radiations. The sunlight is filtered through 

the Earth's atmosphere. Then, the solar 

radiation is received directly from the Sun 

without having been dispersed by the 

atmosphere is called direct radiation. When 

the sun's radiation is changed by the 

atmosphere due to clouds, water vapor, and 

other molecules, it is called diffuse radiation. 

Therefore energy absorbed by the PV panels 

are the sum of the amount of direct and 

diffuse radiations received in a given day. 

In this paper, we propose the use of 

two state-of-the-art MOEAs, namely, 

NSGA-II and GDE3 to optimize the 

deployment of solar PV farms. The 

objectives consisted in maximizing the total 

incident solar energy and minimizing the 

cost of PV panel deployment in a specific 

field. As in Refs. (Sheskin, 2007) and 

(Talbi, 2009), the cost was limited to initial 

investment because the paper focused only 

on the PV configuration setup. However, a 

real PV farm requires overhead costs such as 

maintenance costs, residual fees, energy 

storage component fee and others. Six 

decision variables composed the 

optimization problem, namely, the number 

of collector rows, the distance among 

collector rows, the dimension of collectors, 

the collectors inclination angle, and the 

collectors azimuth angle. 

The remainder sections of this paper 

are organized as follows: Related work, 

description of the designed mathematical 

model of PV panels, the description of the 

two algorithms used in this experiment and 

their fixed settings of the control parameters, 

the experimental results, and conclusions. In 

the Appendix A section can be found the list 

of symbols used in this paper, and Appendix 

B provides the monthly averaged direct 

beam and diffuse irradiance, monthly 

averaged hourly solar and azimuth angles 

due south in Toronto. 

In the last few decades, there has been 

a large number of studies on single-objective 

and multi-objective real-life applications 

(Talbi, 2009). However, most real-life 

problems are multi-objective problems by 

nature because they involve variant 

conflicting objectives. The development of 

efficient multi-objective metaheuristics such 

as evolutionary multi-objective algorithms 

played an integral role in the design of 

complex energy systems. This section 

presents the most recent optimization works 

applied to design solar energy systems. 

Varun (Varun, 2010) implemented a genetic 

algorithm for maximizing the thermal 

performance of flat plate solar air heaters to 

optimize various systems and operating 

parameters. The basic values like number of 

glass covers, Irradiance and Reynolds, plate 

tilt angle, and emissivity of plate are 

optimized for maximizing thermal 

performance. 

Thiaux et al. (Thiaux et al., 2010) 

applied NSGA-II algorithm to optimize the 

load profile impact on stand-alone 

photovoltaic system gross energy 



requirement. Yang et al. (Yang et al., 2007)  

developed a hybrid optimized solar-wind 

system. They optimized the components' 

capacity sizes of hybrid solar-wind power 

generation systems which employs a battery 

bank. Chang (Chang, 2010) attempted to 

maximize the electrical energy output of 

photovoltaic modules using a hybrid 

heuristic method. They combined PSO with 

nonlinear time-varying evolution to 

determine the optimal tilt angle of the 

modules. 

Recently, Deb et al. (Deb et al., 2012) 

have attempted to solve a four-objective 

optimization model of a solar thermal power 

plant operation system. The four objectives 

were profit, total investment costs, internal 

rate of return, and pollution. First, they have 

used clustered NSGA-II algorithm to find 

set of trade-off solutions over the entire 

Pareto-optimal front. Then, they used a 

reference point based on Multiple Criterion 

Decision Making (MCDM) approach with 

the clustered NSGA-II to find preferred 

solutions on some parts of the Pareto-

optimal front. They have demonstrated 

multi-objective optimization procedure with 

user decision making interaction to find a 

single preferred solution. 

Mellit et al. (Mellit et al., 2009) 

describes the effect of utilizing various 

models and artificial intelligence based 

design methods to increase the efficiency of 

solar-wind hybrid plants. The proposed 

system was specially efficient for rural and 

isolated areas which suffer from lack of 

meteorological data due the limited weather 

station, a simulation method is used for 

completing the missing data. 

In a related study, the shading among 

solar panels was modeled and a simulation-

based algorithm was developed to predict 

the loss of energy due to shade in three 

individual locations in Arizona (Sadineni et 

al., 2008). Myers et al. (Myers et al., 2010) 

have proposed and simulated a theoretical 

solar cell by using a modified genetic 

optimization algorithm for shaping solar 

cells. The result of the optimization process 

is a 3D shape which fits within the area and 

volume of a conventional solar cell but it is 

drastically more efficient than regular 

rectangular shapes. 

O. Ekren and Y. Ekren (Ekren and 

Ekren, 2010) have used simulation and 

single-solution based metaheuristic 

algorithm, called simulated annealing (SA), 

for optimizing the size of a PV-wind 

integrated hybrid energy system with battery 

storage. The objective function was the 

minimization of the hybrid energy system's 

total cost. They have demonstrated that the 

optimum result obtained by the SA 

algorithm showed a 10.13\% improvement 

on the objective function as compared to 

their simulation model. 

Appelbaum and Weinstock 

(Appelbaum & Weinstock, 2004) worked on 

electrical output maximization for 

photovoltaic farms by concentrating on 

shading and spacing issues. They employed 

the Sequential Quadratic Programming for 

optimization. More recently, they added the 

azimuth angle of a solar panel as a new 

variable to the problem (Appelbaum & 

Weinstock, 2009). However, the variable is 

manipulated in a manual fashion while the 

system is optimized automatically. They 

reached 12\% in efficiency enhancement for 

a small scale photovoltaic array by reducing 

the amount of shading. Bourennani et al. 

(Bourennani et al., 2001). utilized 

Differential Evolution (DE) and simulation-

based optimization methods to compare the 

maximum annual incident energy captured 

by the solar collectors. The captured energy 

was similar between the simulation 

approach and DE. 

This paper is inspired from 

(Bourennani et al., 2001), (Appelbaum & 

Weinstock, 2004 & 2009) works; however, 

the problem was transformed into a multi-



objective problem. To the best, of our 

knowledge, this paper is the first to optimize 

the configuration setup of PV panels by 

optimizing multiple objectives. Rarely 

multi-objective optimization methods were 

used in PV field. Ref. (Thiaux, 2010) used 

MOO but they focused on the optimization 

of the entire solar farm assuming a certain 

static setup whereas this paper focuses on 

the setup of PV panels which is composed of 

six decision variables namely, the number of 

collector rows (a discrete variable), distance 

among the collector rows, the inclination of 

the PV panels, the height of a PV panel, 

collector's azimuth due south, and collector's 

clearance above ground. Two evolutionary 

multi-objective algorithms are used to for 

optimization, namely NSGA-II and GDE3. 

The results are compared and discussed in 

detail. 

2. PHYSICAL SYSTEM MODEL 

The model to be optimized is composed of 

stationary PV panels. The objective is to 

capture the maximum solar radiation with 

minimal cost investment. The PV collectors 

are fixed in the field as shown in Fig. 1. As 

it can be seen, the collectors are inclined at 

an angle   facing roughly the south. The 

dimension of the collectors is referred as 

length   and as height  . The length of the 

collectors   is equal to the length of the field 

whereas the width is  . There should be a 

minimum clearance of   above the ground 

to minimize the collectors of dust, debris, or 

snow. 

 

2.1 Solar Collector Model 

 

Collector maintenance requires the height of 

them above the ground to be limited. Also, 

the minimum distance,   between two rows 

is limited to allow easy access between PV 

panels. Moreover, the height   of the 

collectors themselves is limited by the 

manufacturer (Appelbaum & Weinstock, 

2004 & 2009). Thus, 

 

             (1) 

           (2) 
 

where          . 

 

The configuration factors for un-shaded and 

shaded are given by as follow, respectively: 
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where   is the normalized distance between 

two rows given by       . 
 

Figure 1. Collectors arrangement in a 

stationary solar field,   indicates row 

number,   indicates length of PV,   

indicates the width of the solar field, D 

indicates the distance between collector 

rows,   indicates PVs' inclination angle, 

and    indicates the perpendicular distance 

created by the PVs. 

 
 

The incidence angle $\theta$ is the angle 

between a normal to the collector face and 

the incoming solar beam and it depends on 

the sun angles (altitude and azimuth) and 

collector angles (azimuth and tilt, Fig. 2). 
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Where   is the sun elevation angle;   is the 

collector inclination angle and         



is the difference between the sun and 

collector azimuth with respect to south. 

 

The relative shaded area is calculated by: 
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Figure 2. Incidence angle : angle between a 

normal to the collector face and the 

incoming solar beam. 
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         is the normalized collector 

length. 

The yearly direct (  ) and diffuse (  ) 

beam irradiation per unit area of an un-

shaded collector (first row) are calculated 

by: 
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The the average yearly direct (  
  ) and 

diffuse (  
  )  beam irradiation per unit area 

of an un-shaded collector ((   ) row) are 

given by: 
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where    is the summation time interval 

from sun rise    to sunset    on the collector 

for the beam irradiance, and from sun rise 

    to sun set     for the diffuse irradiance. 

The outer summation represents one year 

term from January 1
st
 (   ) to December 

31
st
 (     ). Fig. 3 shows the sixth 

decision variable (  ); collectors azimuth 

with respect south and limited to 

,        -. 
 

Figure 3. Collector azimuth with respect to 

south (  ). 

 
 

 

2.2 System Complexities 

The current multi-objective optimization PV 

farm design is composed of several 

complexities that make it hard to solve. It is 

composed of mixed-type integer and real 

variables. The first objective is multimodal 

because it encompasses trigonometric 

functions which are hard to solve. The 

Pareto front geometry is convex composed 

in majority of a linear component and a 

curved convexity at the extreme as shown in 

Fig. 6. Some variables take widely different 

ranges of values, thereby making it difficult 

for the solvers to provide adequate emphasis 

to correct variable combinations. Despite the 

existence of only six variables (6D), this 

problem exhibits a wide and non-uniform 

range of variable values. In addition, the 



non-dominated solutions' variables are 

composed of other complexities which are a) 

non-extremal and b) non-medial having a c) 

dissimilar parameter domains and d) many-

to-one mappings which make the problem 

more complicated to solve (Huband et al., 

2006). Dissimilar parameter domains 

consists in having variables with completely 

dissimilar parameters domain; for example, 

the height and inclination angle are defined 

as follows         and          . 

Many-to-one mappings imply that different 

combination of parameters can generate 

exactly the same solutions (same fitness 

values). For example, in Figs. 6 and 7 you 

can see on the Pareto front two solutions one 

after the other totally different. One solution 

has six rows of PV panels with small 

dimensions and the next one has only two 

rows with very large panel dimensions. Both 

cases result roughly in the same cost and the 

energy generation. 

 

2.3 Objectives, Variables, and Constraints 

The optimization problem is composed of 

two objectives, six variables, and two 

constraints. A final optimal solution is 

composed of the following variables: the 

number of collector rows, distance between 

collector rows, dimension of collectors, 

collectors inclination angle, and collectors 

azimuth angle. The objectives, constraints, 

and variable domains are described below in 

equations 13 to 22. 

The two objectives are the 

maximization of incident energy and 

minimization of the installation and material 

cost. 

1) Incident energy: the yearly absorbed 

incident energy should be maximized in 

order to generate the maximum possible 

electricity. 

2) Cost: the cost of PV array collectors 

installation should be as low as 

possible. 

The mathematical formulation of the 

optimization problem is defined as follows: 
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Variable bounds: 
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          (18) 
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Where: 

     

              

   is the price of PV panel per square 

meter.  

    is the yearly beam irradiation per unit 

area of an un-shaded collector (first row). 

    is the yearly diffuse irradiation per 

unit area of an un-shaded collector (first 

row). 

   
   is the average yearly beam irradiation 

per unit area of shaded collectors(  
      ). 

   
   is the average yearly diffuse 

irradiation per unit area of shaded 

collectors (        ). 

3. ALGORITHMS AND SETTINGS 

3.1 Multi-objective Optimization  

Multi-objective optimization is the process 

of simultaneously optimizing two or more 

conflicting objectives subject to certain 

constraints. A multiobjective optimization 

problem may be defined as: 

   2
         ( )  (  ( )   ( )     ( ))

       
 

 



where   (   ) is the number of 

objectives,     (         ) is the vector 

representing the decision variables, and   

represents the set of feasible solutions 

associated with equality and inequality 

constraints and explicit bounds.  ( )   
 (  ( )   ( )       ( )) is the vector of 

objectives to be optimized. 

A large number of multi-objective 

metaheuristics were successfully used to 

solve real-life problems. Since 1960 there 

have been major developments in the 

metaheuristics field (Talbi, 2009). 

The optimal solution for MOPs is not a 

single solution as for mono-objective 

problems, but a set of solutions defined as 

Pareto optimal solutions. A solution is 

Pareto optimal if it is not possible to 

improve a given objective without 

deteriorating at least another objective. The 

main goal of the resolution of a 

multiobjective problem is to obtain the 

Pareto optimal set and, consequently, non-

dominated solutions known as the Pareto 

front. 

An objective vector    (         ) 

is said to              (         ) 

(denoted by     if and only if no 

component of   is smaller than the 

corresponding component of   and at least 

one component of   is strictly smaller, 

assuming a minimization problem, that is, 
      *       +             *       +         

 

3.2 NSGA-II 

It is a popular fast elitist multi-objective, 

non-domination based genetic algorithm 

(Deb et al, 2012). NSGA-II is able to find 

well spread solutions over the Pareto-

optimal front and requires low 

computational complexity  (   )  where 

  is the number of objectives and   is the 

population size. The main components of 

NSGA-II are: elite-preserving operator 

(preserve and use previously found best 

solutions in subsequent generations), non-

dominated sorting (population is sorted into 

a hierarchy of sub-populations based on the 

ordering of Pareto dominance) and crowded 

tournament selection operator to preserve 

the diversity among non-dominated 

solutions in the later stage of the run in order 

to obtain a good spread of solutions. NSGA-

II algorithm and parameter settings used in 

all our experiments are presented in 

Algorithm 1 and Table I, respectively. 

 

Algorithm 1: NSGA-II Algorithm 

Generate initial population (uniform random 

distribution); 

Evaluate objective values 

Assign rank (level) based on Pareto dominance 

Generate child population 

        Tournament selection 

         Recombination and mutation 

for       to number of generations do 

         for all Parent and child population do 

                  Assign rank based on Pareto 

                  Generate sets of non-dominated fronts 

Determine the crowding distance         

between points on each front 

          end for 

Select elitist points based on rank and 

crowding distance 

           Create next generation 

                   Tournament Selection 

                   Recombination and Mutation 

end for 

 

Table I. NSGA-II parameters’ setting. 
Population size 100 

Initial population Uniform Random 

Maximum Function 

Evaluation 
10

5
 

Mutation probability 1/6
1
 

Crossover probability 0.9 

Mutation distribution Index 20 

Crossover distribution Index 20 

Number of Runs 100 

 

3.3 GDE3 

GDE3 is an extension of Differential 

Evolution (DE) for global optimization with 

an arbitrary number of objectives and 

                                                           
1
 The number 6 represents the dimension of the problem 



constraints (Kukkonen & Lampinen, 2005). 

GDE3 with a single objective and without 

constraints is similar to the original DE. 

GDE3 improves earlier GDE versions in the 

case of multi-objective problems by giving 

better distributed solutions. GDE3 modifies 

earlier GDE versions using a growing 

population and non-dominated sorting with 

pruning of non-dominated solutions to 

decrease the population size at the end of 

each generation. This improves obtained 

diversity and makes the method more stable 

for the selection of control parameter values. 

GDE3 algorithm and parameter settings 

used in all our experiments are shown in 

Algorithm 2 and in Table II, respectively. 

 

Algorithm 2: GDE3 Algorithm 

Generate uniform random parent population of    

individuals. 

Set       

Evaluate objective values 

for       to number of generations do 

         for all Parent population do 

Evaluate objective values for the trial 

vector 

                   Selection process:  

       {
                      
                                                  

 

           

           Set                        

If      (      )            
                   

           end for 

           Create next generation 

Apply non-dominated ranking to      

vectors. Select NP non-dominated vectors and 

set      . 

end for 

 

Table II. GDE3 parameters’ setting 
Population size 100 

Initial population Uniform Random 

Maximum Function 

Evaluation 
10

5
 

Mutation probability 0.5 

Crossover probability 0.9 

Number of Runs 100 

 

4. PHOTOVOLTAIC PARAMETERS 

4.1 Climate Information 

The location selected for all the experiments 

is Toronto, Ontario, Canada (Latitude 

43.45
o
/ Longitude -79.25

o
). Appendix B, 

Tables VII and VIII show 30 years of 

monthly averaged hourly direct normal 

beam irradiance and horizontal diffuse 

irradiance in KWh/m
2
 (NCDIA, 2012). 

These datasets were created by joining 

twelve Typical Meteorological Months 

selected from a database of 30 years of 

Canadian Weather Energy and Engineering 

Datasets (CWEEDS) data. Appendix B, 

Tables VII and VIII show the monthly 

averaged hourly direct and diffuse irradiance 

(used in equations 9 to 12) and tables IX and 

X show 22 years monthly averaged hourly 

solar angles relative to the horizon and solar 

azimuth angles due south in degrees (used in 

equations 5 and 7). The solar datasets were 

taken from the NASA GEOS-4 (NASA, 

2012). 

 

4.2 PV Panel Specification 

There are numerous types of PV panels in 

the market. PV panels are priced based on 

their electrical characteristics (Rated power, 

Voltage, Current, Module efficiency, Short-

circuit current, Open-circuit voltage, 

Maximum series fuse rating, Maximum 

system voltage) and mechanical 

characteristics (Dimensions, Weight, Frame, 

number of Solar Cells). For our experiment, 

we have used Ameresco Solar BP 90 Watt, 

12Vsolar panel priced at $616.59/m
2
 (www, 

2012). Please note that even though this 

specific solar panel was use for the 

experiments, the solution outcome would 

not necessarily be affected if other panels 

are used. In overall, the current PV panels' 

average price in Ontario is $4.50 per Kwh 

including all installation fees and required 

material. 

 



 

Figure 4. The best (HV) set of non-dominated solution set found by NSGA-II with respect to number of 

collector rows. 

(a) 1 row (b) 2 rows 

(c) 3 rows (d) 4 rows 

(e) 5 rows (f) 6 rows 

(g) 7 rows (h) 8 rows 

(i) All rows 



5. RESULTS AND DISCUSSION 

Due to stochastic nature of MOEAs, NSGA-

II, and GDE3 were executed 100 times each 

independently. The stopping criteria for both 

algorithms is 10
5
 function evaluations. Their 

best and median solutions were compared 

graphically. In addition, the hypervolume 

(HV) measure (Zitzler & Thiele, 1999) was 

used for complementarity; the Wilcoxon 

statistical procedure  (www, 2012) was used 

to present the HV results at a 0.05 

significance level. The HV measure or   

metric is described as the Lebesgue measure 

  of the union of hypercubes    defined by a 

non-dominated point    and a reference 

point     : 

 

 ( )     (⋃          )   
  (⋃                )  

 

There were notable differences among 

the best solutions found by NSGA-II and 

GDE3. The most important difference 

consisted in NSGA-II being able to find a 

more complete spectrum of the Pareto front. 

Hence, a section of Pareto front is 

completely missed by GDE3. This missed 

section by GDE3 is circled in Fig. 6.  

If that missed section of the solutions is 

ignored, it can be seen that found solutions 

are similar. However, there is a difference in 

term of mapping. As explained earlier, the 

studied problem has many-to-one mapping 

properties that makes more complex. I.e., 

different setup parameters can generate the 

same solutions. For example, one row of 

very large PV panels can generate the same 

amount of energy as 6 rows of small PV 

panels. To illustrate the different setups 

based on the number of rows, the solutions 

found respectively by NSGA-II and GDE3 

are show in Fig. 4 and Fig. 5. 

To do a comparison from a more 

neutral angle, the respective Pareto sets of 

NSGAII and GDE3 are shown in Figs. 7 and 

Fig. 8 based on their median HV measure. It 

can be seen that the solutions found are very 

similar; the Pareto set geometry is very 

similar as shown in Fig 9. However, the 

parameters are different as shown in Fig. 7 

and Fig. 8. 

On the other hand, GDE3 had a better 

dispersion of found candidate solutions than 

NSGA-II. As shown in Fig. 5, the solutions 

in the objective space of GDE3 are more 

evenly distributed as compared to NSGA-II 

as shown in Fig. 4. It can be seen, as pointed 

out, a different location of Pareto front 

found by NSGA-II, there are small gaps and 

other more compact areas. However, this 

deficiency is less important as compared to 

the problem described in the previous 

paragraph because the real Pareto front can 

be estimated. For example, approximation 

methods can be used to complete these gaps. 

Otherwise, the optimization can continue 

further with emphasis on those sections 

which are in the interest of decision makers 

(such as what is done with interactive multi-

objective optimizers). Tables III and IV 

show the best (HV) set of non-dominated 

solution set found by NSGA-II and GDE3 

algorithms.  

When comparing the decision 

variables, for example, the number of 

collector rows  , and the collector’s 

inclination angle ( ), GDE3's solutions were 

not as diverse as NSGA-II. Fig. 5f shows the 

only one (GDE3 could not jump to the a 

higher inclination angle) solution with 

    that is found using GDE3 however 

Fig. 4f, g, and h show that there are 9 

solutions corresponding to    , 3 

solutions with    , and 4 solutions with 

   . NSGA-II was able to jump to higher 

inclination angles that satisfy problem 

constraints - from        to       , 

which resulted with the energy          

MWh/year. 



Figure 5. The best (HV) set of non-dominated solution set found by GDE3 with respect to number of 

collector rows 

(a) 1 row (b) 2 rows 

(c) 3 rows (d) 4 rows 

(e) 5 rows (f) 6 rows 

(g) All rows 

 



Figure 6. The non-dominated solution set found 

by NSGA-II and GDE3 algorithms based on 

their respective best HV measure. 

 
 

Figure 7. The non-dominated solution set found 

by NSGA-II based on the HV median. 

 
 

Another interesting observation as 

pointed in Fig. 5 is that the GDE3 solutions 

are different. For example, solutions with 2 

rows are right beside of solutions with 6 

rows in the objective space. Despite their 

very different configuration two rows with 

large dimensions and large space between 

rows vs. six rows with small dimensions and 

tight spaces between rows, the energy output 

was very similar. Therefore, GDE3 has 

strong Many-to-one mapping properties 

because NSGA-II was unable to find such 

energy outputs with large number of rows. 

 

Figure 8. The non-dominated solution set found 

by GDE3 based on the HV median. 

 

Figure 9. The non-dominated solution sets found 

by NSGA-II and GDE3 algorithms based on the 

median HV. 

 
 

One extreme solution of the Pareto 

optimal solution consists in having the 

minimal investment that generates the 

lowest absorbed energy. It is the lowest 

possible cost. The other extreme of the 

Pareto optimal solution consists in having 

the maximum energy (over 108 MWh/year) 

with the maximum investment (over 

$60,000). The use of multi-objective 

optimizers generated solutions that would 

not be found using single objective 

optimizations. In Fig. 3, it can be observed 

that there is a linear relationship between the 

two cost and energy absorbed objectives 

with these respective ranges   ,       
         - and   ,           - 
MWh/year. Past, the             and 

         MWh/year, the linear 

relationship have a higher slope (i.e. the 

return on investment (ROE)) becomes less 

attractive to decision makers. For example, 

if an investor has comfortable amount of 

money and is looking into maximizing his 

ROE, probably he will select the solution 

             and          

MWh/year. Other solutions with lower 

investment can also be selected if the 

investor has budget limitations by 

preserving the same ratio of ROE. 

The Table V show the average HV 

with the standard deviation. The Table VI 

show the median HV measure with the IQR. 

In both cases, the NSGA-II algorithm 

outperforms the GDE3 algorithms probably 



Table III. The best (HV) set of non-dominated solution set found by NSGA-II. 

  

  

( ) 

  

( ) 

  

( ) 

  

( ) 

  

( ) 

  

(   ) 

Cost 

($) 

1 0.2 27.9 1.9 -4.0 0.6 2.1 924.9 

1 0.2 27.9 1.8 -4.0 0.6 2.1 924.9 

1 2.0 26.7 1.6 -3.9 0.6 20.6 9075.6 

1 0.3 29.8 2.2 -4.0 0.6 2.8 1252.0 

1 0.5 37.3 1.6 -3.9 0.5 4.7 2087.3 

1 0.4 24.3 1.7 -3.9 0.5 4.5 1981.4 

1 1.5 27.9 1.9 -4.0 0.5 15.6 6881.4 

2 1.6 22.9 1.0 -3.9 0.6 32.8 14697.8 

2 1.9 26.1 1.7 -3.9 0.6 40.1 17901.7 

2 1.7 24.9 0.8 -5.1 0.9 34.0 15285.0 

2 1.8 25.2 1.8 -3.9 0.5 37.9 16882.7 

2 1.3 28.9 1.6 -1.4 0.6 27.6 12346.3 

2 1.7 21.1 1.0 -2.7 0.5 34.7 15582.4 

2 1.3 27.0 1.8 -7.6 0.6 27.9 12428.6 

3 0.2 28.0 2.2 -15.8 0.5 6.8 2981.9 

3 2.0 16.4 1.4 -3.8 0.5 60.5 27360.7 

3 1.5 36.4 2.3 -15.8 0.5 46.7 21062.7 

3 0.7 25.3 2.2 -15.4 0.5 22.4 9937.0 

3 1.5 26.0 2.2 -4.0 0.5 48.0 21346.7 

3 1.4 23.4 1.8 -14.2 0.6 42.9 19178.1 

3 1.6 26.5 1.6 -3.1 0.7 49.2 22046.7 

3 1.9 22.3 1.9 -3.9 0.6 57.6 25749.1 

3 1.4 26.2 1.9 0.8 0.6 43.7 19770.5 

3 1.9 25.9 1.9 -3.9 0.5 59.5 26602.6 

3 1.6 22.0 1.8 -3.8 1.2 50.1 22429.3 

3 1.9 25.9 1.9 -3.9 0.6 58.7 26232.1 

3 0.7 24.9 1.0 -5.1 0.9 21.2 9432.9 

3 1.5 26.2 1.9 0.8 0.6 45.1 20381.6 

3 1.7 25.3 1.9 -12.8 0.5 53.8 24069.3 

3 0.3 28.4 0.8 -4.0 0.6 8.9 3928.2 

3 1.8 25.3 2.1 -15.4 0.5 55.1 24630.6 

3 1.7 18.2 0.8 -16.0 0.5 51.7 23438.2 

3 0.4 21.0 1.0 -14.1 0.6 13.1 5842.6 

3 1.5 21.3 1.0 -4.2 0.8 44.9 20231.9 

3 1.8 26.3 2.1 -15.4 0.6 55.1 24613.4 

4 1.7 25.2 1.6 -6.4 0.6 68.2 30590.0 

4 1.7 34.2 1.8 -15.8 0.6 70.3 31849.0 

4 0.3 28.4 0.8 -4.0 0.6 10.3 4577.3 

4 1.9 22.1 1.6 -3.8 0.6 76.6 34343.4 

4 0.6 28.7 2.3 -3.9 0.6 24.7 10944.2 

4 0.8 25.6 0.9 -14.8 0.5 31.8 14232.6 

4 1.4 23.4 1.8 -20.9 0.5 56.3 25359.9 

4 0.6 28.7 0.8 -3.9 0.6 23.6 10555.2 

4 2.0 26.7 1.4 -3.9 0.8 80.5 36302.5 

4 0.7 26.7 1.6 -4.1 0.7 29.1 12940.1 

4 1.7 24.9 1.8 -3.9 0.6 71.9 32135.5 

4 1.5 24.1 1.8 -4.9 0.7 62.2 27831.8 

4 1.6 28.0 1.9 -3.8 0.6 63.9 28622.3 

4 1.9 28.5 1.8 -4.4 0.5 77.7 34957.9 

4 1.8 24.9 1.8 -2.9 0.6 74.1 33240.7 

4 1.9 22.6 1.6 -5.5 0.6 79.2 35559.9 

4 1.5 28.0 1.7 -9.7 0.6 62.7 28312.7 

4 1.6 25.2 1.6 -6.4 0.6 65.5 29364.3 

4 1.9 22.6 1.5 -4.0 0.5 80.0 35913.4 

4 1.8 27.9 1.9 -3.9 0.7 72.8 32609.4 

4 1.9 24.1 1.7 -6.4 0.6 78.3 35145.0 

4 1.6 25.2 1.6 -6.4 0.6 65.5 29364.3 

4 1.6 22.1 1.8 -3.9 1.2 66.9 29905.8 

4 1.6 22.1 1.8 -3.9 0.5 67.0 29957.2 

4 1.8 24.9 1.7 -3.9 0.6 73.3 32816.9 

5 0.3 27.9 0.8 -10.4 0.6 16.4 7338.9 

5 2.0 28.4 0.8 -4.0 0.6 100.6 46236.0 

5 1.9 26.1 0.8 -3.9 0.6 98.2 44874.4 

5 1.9 25.7 0.8 -14.3 0.6 96.1 43921.0 

5 1.6 15.6 0.8 -4.2 0.6 83.5 37987.0 

5 2.0 28.4 0.8 -21.9 0.6 99.5 46050.3 

5 1.7 21.1 1.0 -4.0 0.6 85.0 38450.3 

5 1.5 25.9 1.0 -4.0 0.6 74.8 33719.8 

5 1.8 22.1 0.8 -3.9 0.6 91.0 41257.3 

5 1.8 26.5 0.9 -3.9 0.7 92.9 42337.4 

5 1.7 21.1 1.0 -4.0 0.8 87.7 39710.6 

5 1.8 22.1 0.9 -4.0 1.2 89.3 40417.4 

5 1.8 25.5 0.8 -4.7 0.8 91.2 41622.4 

5 1.6 24.8 0.8 -3.9 1.1 81.9 37178.1 

5 1.8 22.1 0.9 -4.3 1.1 92.8 42156.8 

5 1.6 25.9 0.8 -3.9 0.6 81.7 37146.3 

5 0.2 22.1 0.8 -4.2 0.6 11.7 5225.9 

5 1.7 22.1 0.8 -16.0 0.7 86.3 39196.4 

5 1.7 21.1 1.0 -4.0 0.6 86.2 38956.0 

5 1.9 22.1 0.8 -4.2 0.6 94.9 43180.4 

5 1.9 25.6 0.9 -14.3 0.6 95.3 43476.3 

5 1.7 21.1 0.8 -15.8 0.5 88.3 40110.1 

5 0.6 21.9 0.8 -16.7 0.6 30.0 13437.2 

6 1.8 43.4 0.8 -4.7 0.7 101.4 49768.7 

6 1.9 46.1 0.8 -14.3 0.6 106.2 52962.0 

6 0.4 30.4 1.6 -14.1 0.6 26.3 11685.1 

6 1.9 46.2 0.8 -10.9 0.6 103.8 51911.8 

6 0.7 22.6 0.8 -4.1 1.1 41.5 18614.8 

6 1.9 46.5 0.8 -3.9 0.6 104.6 52458.0 

6 1.8 43.9 0.8 -3.9 0.6 102.7 50514.5 

6 1.9 46.1 0.8 -14.3 0.6 106.0 52874.1 

6 1.8 43.9 0.8 -3.9 0.6 102.7 50514.5 

7 1.8 54.2 0.8 -16.0 0.5 106.5 56581.0 

7 1.8 54.2 0.8 -16.0 0.5 106.5 56581.0 

7 0.4 30.4 0.8 -18.1 0.6 30.2 13632.6 

8 1.7 61.9 0.8 -16.0 0.5 108.5 62563.4 

8 1.7 61.9 0.8 -16.0 0.5 108.5 62563.4 

8 1.7 61.8 0.8 -16.0 0.5 106.5 61142.4 

8 1.7 62.0 0.8 -16.0 0.5 107.1 61741.8 

 

because of the missed portion of Pareto Set 

by GDE3. However, GDE3 shows a better 

consistence in the results because of a 

smaller standard deviation and IQR than 

NSGA-II. 



Table IV. The best (HV) set of non-dominated solution set found by GDE3. 

    

( ) 

  

( ) 

  

( ) 

  

( ) 

  

( ) 

  

(   ) 

Cost 

($) 

1 1.9 26.6 1.7 -4.0 0.6 19.4 8538.4 

1 1.0 26.3 2.2 -4.0 0.6 9.9 4373.1 

1 0.3 26.3 0.8 -4.0 1.3 3.1 1367.3 

1 1.6 23.2 1.8 -4.0 0.5 16.6 7341.1 

1 0.2 28.0 0.8 -4.0 1.2 2.1 924.9 

1 1.3 27.1 0.8 -4.0 1.0 14.1 6199.2 

1 0.2 28.0 0.8 -4.0 0.5 2.1 924.9 

1 1.5 27.0 2.5 -4.0 1.1 15.9 6992.9 

1 0.9 24.4 1.8 -4.0 0.5 8.9 3937.7 

1 2.0 27.7 0.8 -4.0 0.9 21.0 9248.8 

1 1.2 28.9 2.3 -4.0 0.5 12.4 5458.2 

1 0.4 26.7 2.1 -4.0 0.5 4.2 1829.6 

1 1.7 27.1 1.0 -3.9 0.6 17.5 7708.2 

2 1.3 24.3 1.7 -4.0 0.8 26.8 11887.5 

2 1.6 24.1 2.5 -3.9 0.5 32.3 14323.9 

2 1.7 27.5 2.4 -4.0 0.7 35.5 15754.7 

2 1.3 27.7 0.8 -4.0 0.9 25.8 11552.7 

2 2.0 21.9 2.5 -4.0 0.9 41.6 18497.6 

2 1.9 27.3 2.5 -4.0 0.9 39.9 17738.5 

2 1.4 23.2 2.2 -4.0 0.5 28.5 12654.8 

2 0.2 26.4 2.5 -4.0 0.5 5.0 2194.0 

3 1.1 25.6 2.5 -3.9 0.8 34.4 15250.8 

3 0.7 26.5 2.5 -4.0 0.6 21.8 9668.8 

3 1.8 23.8 1.8 -4.0 0.5 55.9 24971.8 

3 0.2 27.8 2.5 -4.0 0.7 6.3 2774.7 

3 2.0 22.7 2.5 -4.0 1.1 61.4 27379.4 

3 1.0 23.6 2.0 -4.0 0.6 29.5 13119.2 

3 0.8 21.6 0.9 -4.0 0.7 24.7 11039.3 

3 0.8 26.3 1.8 -4.0 0.9 24.2 10751.0 

3 1.9 23.4 2.1 -4.0 0.9 57.6 25760.6 

3 1.9 26.8 2.5 -4.0 0.5 60.5 26981.1 

3 1.3 25.4 2.0 -4.0 1.0 39.1 17369.4 

3 1.4 26.5 2.4 -4.0 1.2 42.7 18979.6 

3 1.3 26.5 2.3 -4.0 1.2 40.9 18165.3 

3 1.9 25.1 2.0 -4.0 0.9 59.6 26607.8 

3 0.2 26.4 2.0 -4.0 0.8 7.5 3291.1 

3 1.5 26.9 2.3 -4.0 0.6 46.6 20740.0 

3 0.4 25.5 2.5 -4.0 0.6 11.1 4911.8 

3 1.2 25.5 2.5 -4.0 0.6 37.9 16828.8 

3 2.0 25.2 2.5 -4.0 1.0 62.3 27746.5 

4 1.1 25.6 2.5 -3.9 0.8 45.8 20334.4 

4 1.9 24.3 1.7 -4.0 0.8 77.2 34573.6 

4 1.9 23.5 1.7 -4.0 0.6 76.2 34153.5 

4 1.9 24.5 1.7 -4.0 0.5 79.4 35575.6 

4 1.8 23.8 1.7 -4.0 0.8 74.4 33295.7 

4 1.6 23.6 1.5 -4.0 0.5 67.1 30059.3 

4 1.1 25.5 2.4 -4.0 0.6 44.9 19953.0 

4 1.7 23.5 1.8 -4.0 0.5 71.5 31964.9 

4 1.6 23.6 1.7 -4.0 1.3 65.1 29070.3 

4 1.3 24.0 1.8 -4.0 1.3 54.2 24177.5 

4 1.8 23.6 1.7 -4.0 1.3 73.5 32909.1 

4 0.4 24.8 1.7 -4.0 1.3 18.3 8099.8 

4 1.3 24.3 1.7 -4.0 0.5 52.0 23167.0 

4 0.8 24.3 2.5 -4.0 0.5 33.2 14740.6 

4 1.4 25.8 2.3 -4.0 1.2 58.5 26037.0 

4 1.7 24.0 2.0 -4.0 0.6 68.4 30519.1 

4 1.6 24.0 2.0 -4.0 0.6 66.1 29517.2 

4 2.0 22.5 1.5 -4.0 0.6 81.4 36541.1 

4 1.1 25.0 2.5 -4.0 0.9 47.7 21169.5 

4 1.6 24.1 1.7 -4.0 0.6 64.1 28647.7 

4 0.3 23.1 1.6 -4.0 0.5 13.1 5825.9 

4 2.0 22.5 1.5 -4.0 0.6 82.4 36995.3 

4 1.8 27.0 1.5 -4.0 1.1 72.4 32552.5 

4 1.7 24.0 1.7 -4.0 1.1 69.3 31007.6 

4 1.3 26.4 1.3 -4.0 1.1 53.2 23798.0 

4 1.9 21.6 1.5 -4.0 1.2 78.3 35137.1 

4 1.7 24.2 1.5 -4.0 0.5 70.5 31616.6 

4 1.2 24.7 2.5 -4.0 1.0 48.7 21633.4 

4 1.5 25.9 1.8 -4.0 0.9 63.3 28268.1 

4 0.7 26.8 2.5 -4.0 0.5 30.5 13505.8 

4 1.2 23.6 1.9 -4.0 1.2 50.7 22584.7 

4 1.1 24.6 2.3 -4.0 1.2 43.7 19421.9 

4 0.8 27.4 2.5 -4.0 0.8 31.4 13931.7 

4 1.4 23.2 2.2 -4.0 0.7 56.8 25309.6 

4 1.2 27.2 2.5 -4.0 0.6 49.8 22108.2 

4 1.3 22.6 2.2 -4.0 0.6 55.0 24499.3 

4 0.9 23.9 1.9 -4.0 1.2 36.5 16217.9 

4 0.4 24.2 2.1 -4.0 0.8 14.8 6549.1 

4 2.0 22.3 1.6 -4.0 0.6 80.4 36069.8 

5 1.9 20.0 0.8 -4.0 0.5 94.9 43091.6 

5 1.9 19.7 0.8 -4.0 0.6 94.1 42694.8 

5 0.5 23.1 1.6 -4.0 0.8 27.6 12254.6 

5 1.9 24.5 0.8 -4.0 0.8 97.6 44469.5 

5 1.7 21.4 1.0 -4.0 1.0 86.5 39022.7 

5 2.0 28.6 0.8 -4.0 0.6 100.6 46244.1 
5 1.6 23.6 1.1 -4.0 0.6 83.4 37574.2 
5 1.5 22.8 1.3 -4.0 0.5 75.3 33775.4 
5 1.8 22.5 0.9 -4.0 0.9 90.4 40914.8 
5 1.8 21.6 0.9 -4.0 1.0 93.2 42223.9 
5 2.0 27.1 0.8 -3.9 0.6 99.7 45676.4 
5 1.8 21.6 0.9 -4.0 0.5 91.3 41383.3 
5 1.7 21.2 1.0 -4.0 0.5 87.5 39520.7 
5 1.7 21.2 1.1 -4.0 0.5 84.6 38116.1 
5 1.8 20.2 0.8 -4.0 0.7 89.4 40533.2 
5 1.9 21.9 0.8 -4.0 0.8 96.5 43842.9 
5 1.7 22.7 1.0 -4.0 0.6 85.4 38540.8 
5 1.8 20.3 0.9 -4.0 0.5 92.2 41785.3 
5 2.0 25.6 0.8 -4.0 0.8 98.7 45087.3 
6 1.4 22.5 0.8 -4.0 0.5 88.4 40013.2 

 

 

Table V. HV Mean and Standard Deviation 

 NSGA-II GDE3 

PV                                 



Table VI. HV Median and IQR 

 NSGA-II GDE3 

PV                                 

 

6. CONCLUSIONS 

In this paper, two state-of-the art MOEAs, 

namely NSGA-II and GDE3, were used for 

optimal deigning of solar farm. The 

objectives were the maximization of the 

total incident solar energy and the 

minimization of the cost of deployment for a 

specific field. The decision variables 

consisted in number of collector rows, 

distance between collector rows, dimension 

of collectors, collectors inclination angle and 

collectors azimuth. 

The proposed MOO optimization 

methods permitted to find a variety of 

optimal PV farm design solutions which 

would not be found using single objective 

solutions. For example, some intermediate 

solutions could be of interest with regards to 

other non-expressed objectives or secondary 

objectives such as space between solar 

panels or other technical aspects. Based on 

our result the maximum energy was 

         MWh/year when the number of 

rows      , the PV panel height    
      m, the PV inclination angle   
     , the distance between subsequent 

panels          , and the PV clearance 

above the ground        . 

Our results showed that overall NSGA-

II had a better performance than GDE3 

because it was able a broader spectrum of 

the Pareto front. NSGA-II has found a 

portion of the Pareto front that was not 

found by GDE3. GDE3 had a slightly better 

distribution of the non-dominated solutions 

as compared to NSGA-II and had a better 

many-to-one mapping properties. 

The generated solutions demonstrated 

the practicality of MOEAs which generated 

interesting solutions with a higher ROI in 

the middle of the Pareto front which won't 

be generated using a single objective 

optimization method. 

As future work, we would like to 

extend the deployment of solar farms with 

tracking capability as supposed to stationary 

solar farms discussed in this paper. Also, we 

would like to investigate gradual linear land 

inclination between rows to minimize the 

shadow on subsequent rows. Finally we 

would like investigate the use of ray 

focusing mirrors to direct the radiation when 

the sun's ray is not in the direction of the 

solar panels. 
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APPENDIX A 

NOMENCLATURE 

      =   maximum collector height above ground 

   =   relative shaded area 

  =   distance between collector rows 

     =   minimum distance between collector rows 

  =   normalized distance between collector rows 

   =  configuration factor for un-shaded collectors 

  
   =   configuration factor for shaded collectors 

   =   direct beam irradiance on the collector perpendicular to solar rays 

    =   horizontal diffuse irradiance 

  =   collector height 

   =   shadow height 

   =   relative shadow height 

     =   maximum collector height 

  =   number of solar collector rows 

  =   solar field length 

   =   shadow length 

  =   normalized collector length 

   =   relative shadow length 

  =   yearly energy 

   =   yearly beam irradiation per unit area of an un-shaded collector (first row) 

   =   yearly diffuse irradiation per unit area of an un- shaded collector (first row) 

  
   =   average yearly beam irradiation per unit area of shaded collector ($(K-1)$ rows) 

  
   =   average yearly diffuse irradiation per unit area of shaded collector ($(K-1)$ rows) 

   =   sun rise on the collector for the beam irradiance 

   =   sun set on the collector for the beam irradiance 

    =   sun rise for the diffuse irradiance 

    =   sun set for the diffuse irradiance 

  =   solar field width 

     =   maximum solar field width 

   =   natural number set 

  =   sun elevation angle 

  =   collector inclination angle 

  =   difference between the sun and collector azimuth 

   =   collector azimuth with respect to south 

   =   sun azimuth with respect to south 

  =   angle between the solar beam and the normal to the collector 

    =   time interval 

 



APPENDIX B 

TABLES 

Table VII. Monthly averaged hourly direct normal beam irradiance: Latitude        / Longitude 

       (Kwh/m^2) 

Time   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec 
0:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
3:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
4:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
5:00 0.0000 0.0000 0.0000 0.0047 0.1467 0.1583 0.1481 0.0153 0.0000 0.0000 0.0000 0.0000 
6:00 0.0000 0.0000 0.0157 0.1577 0.3369 0.2626 0.3119 0.2088 0.1339 0.0018 0.0000 0.0000 
7:00 0.0000 0.0234 0.2203 0.2634 0.4185 0.3398 0.3781 0.3113 0.3508 0.1634 0.0173 0.0000 
8:00 0.0939 0.1708 0.3429 0.3327 0.4887 0.3896 0.4438 0.3813 0.4098 0.2218 0.0572 0.0659 
9:00 0.1796 0.2569 0.3795 0.3745 0.4609 0.4468 0.4807 0.4104 0.4506 0.2570 0.1045 0.1436 

10:00 0.2627 0.3035 0.3546 0.4053 0.4430 0.4467 0.5061 0.4117 0.4401 0.3320 0.1753 0.2243 
11:00 0.3075 0.3277 0.3287 0.4304 0.4369 0.4531 0.5313 0.3910 0.4126 0.3312 0.1804 0.2444 
12:00 0.3193 0.3500 0.3615 0.4094 0.4189 0.4398 0.5115 0.4044 0.4388 0.3034 0.2146 0.2718 
13:00 0.3112 0.3291 0.3097 0.3829 0.3665 0.4108 0.4417 0.3821 0.4557 0.2903 0.2041 0.2671 
14:00 0.2777 0.3139 0.2867 0.3373 0.3548 0.3649 0.3760 0.3616 0.4058 0.3043 0.1816 0.1803 
15:00 0.2312 0.3128 0.2617 0.3486 0.3073 0.3333 0.3492 0.3488 0.3314 0.2685 0.0903 0.1191 
16:00 0.1149 0.2586 0.2118 0.3050 0.2622 0.3139 0.3437 0.3249 0.2570 0.1759 0.0244 0.0029 
17:00 0.0000 0.0565 0.1342 0.2282 0.1894 0.2753 0.2803 0.2428 0.1505 0.0139 0.0000 0.0000 
18:00 0.0000 0.0000 0.0000 0.0610 0.0922 0.1934 0.2078 0.1399 0.0143 0.0000 0.0000 0.0000 
19:00 0.0000 0.0000 0.0000 0.0000 0.0055 0.0903 0.0740 0.0016 0.0000 0.0000 0.0000 0.0000 
20:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
21:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
22:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
23:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table VIII. Monthly averaged hourly horizontal diffuse irradiance: Latitude        / Longitude        (Kwh/m^2) 

Time   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec 
0:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
3:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
4:00 0.0000 0.0000 0.0000 0.0001 0.0012 0.0079 0.0048 0.0005 0.0000 0.0000 0.0000 0.0000 
5:00 0.0000 0.0000 0.0004 0.0086 0.0281 0.0389 0.0322 0.0190 0.0029 0.0000 0.0000 0.0000 
6:00 0.0000 0.0017 0.0156 0.0411 0.0701 0.0816 0.0647 0.0591 0.0368 0.0088 0.0003 0.0000 
7:00 0.0049 0.0199 0.0483 0.0957 0.1220 0.1354 0.1033 0.1118 0.0786 0.0444 0.0156 0.0013 
8:00 0.0280 0.0556 0.0967 0.1378 0.1657 0.1902 0.1443 0.1609 0.1160 0.0921 0.0526 0.0197 
9:00 0.0686 0.0960 0.1439 0.1843 0.2215 0.2298 0.1782 0.2155 0.1595 0.1415 0.0986 0.0610 

10:00 0.1056 0.1267 0.1752 0.2339 0.2605 0.2803 0.2083 0.2637 0.1977 0.1802 0.1278 0.0943 
11:00 0.1282 0.1522 0.2018 0.2314 0.2779 0.3088 0.2373 0.2937 0.2267 0.1920 0.1351 0.1016 
12:00 0.1331 0.1699 0.1868 0.2255 0.2909 0.3202 0.2673 0.2943 0.2199 0.2039 0.1316 0.0993 
13:00 0.1223 0.1817 0.1875 0.2105 0.2927 0.3171 0.2858 0.2796 0.2015 0.1868 0.1128 0.0892 
14:00 0.0936 0.1507 0.1721 0.1915 0.2654 0.2889 0.2783 0.2463 0.1907 0.1427 0.0813 0.0755 
15:00 0.0608 0.1040 0.1390 0.1498 0.2040 0.2339 0.2409 0.1998 0.1535 0.1018 0.0460 0.0415 
16:00 0.0320 0.0596 0.0930 0.1078 0.1601 0.1715 0.1764 0.1511 0.1008 0.0532 0.0156 0.0073 
17:00 0.0063 0.0293 0.0393 0.0597 0.1022 0.1190 0.1194 0.0992 0.0493 0.0103 0.0012 0.0006 
18:00 0.0000 0.0032 0.0068 0.0190 0.0475 0.0660 0.0682 0.0461 0.0098 0.0007 0.0000 0.0000 
19:00 0.0000 0.0000 0.0002 0.0029 0.0030 0.0245 0.0279 0.0123 0.0009 0.0000 0.0000 0.0000 
20:00 0.0000 0.0000 0.0000 0.0000 0.0001 0.0036 0.0038 0.0003 0.0000 0.0000 0.0000 0.0000 
21:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
22:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
23:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 



 

Table IX. Monthly averaged hourly solar azimuth angles due south (degrees):        / Longitude         

Time   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec 

0:00  n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

1:00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

2:00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

3:00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

4:00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

5:00 n/a n/a n/a n/a -116.0 -119.5 -119.4 n/a n/a n/a n/a n/a 

6:00 n/a n/a n/a -100.0 -106.1 -109.8 -109.5 -103.8 n/a n/a n/a n/a 

7:00 n/a n/a -82.8 -89.8 -96.3 -100.4 -99.9 -93.8 -84.1 -75.0 n/a n/a 

8:00 -60.0 -66.0 -72.0 -80.0 -86.1 -90.6 -90.1 -83.3 -74.0 -64.0 -57.0 -55.0 

9:00 -49.0 -55.0 -60.0 -67.0 -75.0 -80.0 -79.0 -72.0 -61.0 -51.0 -45.0 -44.0 

10:00 -36.0 -42.0 -46.0 -52.0 -60.0 -66.0 -65.0 -57.0 -46.0 -37.0 -32.0 -32.0 

11:00 -23.0 -27.0 -29.0 -33.0 -38.0 -44.0 -45.0 -37.0 -27.0 -20.0 -17.0 -18.0 

12:00 -7.0 -10.0 -10.0 -8.0 -8.0 -11.0 -15.0 -11.0 -5.0 -1.0 -1.0 -3.0 

13:00 8.0 8.0 11.0 18.0 25.0 27.0 21.0 18.0 18.0 17.0 15.0 12.0 

14:00 23.0 25.0 31.0 41.0 50.0 54.0 49.0 43.0 38.0 34.0 30.0 26.0 

15:00 37.0 40.0 48.0 58.0 68.0 72.0 68.0 61.0 54.0 49.0 43.0 39.0 

15:00 49.0 53.0 61.0 72.0 81.0 84.0 81.0 74.0 68.0 61.0 55.0 51.0 

17:00 60.0 65.0 73.0 83.0 91.0 95.0 92.0 86.0 79.0 72.0 n/a n/a 

18:00 n/a n/a 84.0 94.0 101.0 104.0 102.0 96.0 90.0 n/a n/a n/a 

19:00 n/a n/a n/a n/a 111.0 114.0 111.0 106.0 n/a n/a n/a n/a 

20:00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

21:00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

22:00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

23:00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Table X. Monthly averaged hourly solar Angles relative to the horizon (degrees):        / Longitude         

Time   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec 
0:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 
1:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 
2:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 
3:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 
4:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 
5:00  n/a   n/a   n/a   n/a  0.3 2.9 0.6  n/a   n/a   n/a   n/a  n/a 
6:00  n/a   n/a   n/a  3.5 10.4 12.7 10.4 5.7  n/a  n/a  n/a  n/a 
7:00  n/a   n/a  4.9 14.3 21.1 23.2 20.9 16.4 10.8 4.4  n/a  n/a 
8:00 1.4 6.9 15.5 25.1 32.0 34.1 31.8 27.2 21.4 14.5 7.3 2.4 
9:00 10.1 16.3 25.4 35.6 42.7 44.9 42.6 37.8 31.4 23.6 15.7 10.6 

10:00 17.4 24.3 34.1 44.9 52.7 55.3 52.9 47.6 40.1 31.1 22.3 17.2 
11:00 22.7 30.3 40.8 52.2 60.9 64.2 61.8 55.6 46.5 36.1 26.7 21.7 
12:00 25.4 33.7 44.3 56.0 65.2 69.3 67.2 59.9 49.5 38.0 28.3 23.6 
13:00 25.3 33.7 44.1 55.0 63.4 67.7 66.4 59.1 48.2 36.4 26.9 22.6 
14:00 22.3 30.6 40.0 49.5 56.7 60.5 60.0 53.5 43.0 31.6 22.6 18.9 
15:00 16.8 24.6 33.1 41.2 47.3 50.7 50.6 44.9 35.1 24.3 16.0 12.9 
16:00 9.4 16.7 24.2 31.3 36.8 40.1 40.1 34.8 25.5 15.3 7.7 5.2 
17:00 0.5 7.3 14.1 20.6 26.0 29.2 29.2 24.0 15.1 5.3 n/a  n/a 
18:00 n/a  n/a  3.5 9.8 15.2 18.5 18.4 13.2 4.3 n/a  n/a  n/a 
19:00 n/a  n/a  n/a  n/a  4.8 8.3 8.0 2.5 n/a  n/a  n/a  n/a 
20:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 
21:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 
22:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 
23:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 

 


